skip to main content


Search for: All records

Creators/Authors contains: "Balakirev, Fedor F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The possibility of high, room-temperature superconductivity was predicted for metallic hydrogen in the 1960s. However, metallization and superconductivity of hydrogen are yet to be unambiguously demonstrated and may require pressures as high as 5 million atmospheres. Rare earth based “superhydrides”, such as LaH10, can be considered as a close approximation of metallic hydrogen even though they form at moderately lower pressures. In superhydrides the predominance of H-H metallic bonds and high superconducting transition temperatures bear the hallmarks of metallic hydrogen. Still, experimental studies revealing the key factors controlling their superconductivity are scarce. Here, we report the pressure and magnetic field dependence of the superconducting order observed in LaH10. We determine that the high-symmetry high-temperature superconductingFm-3mphase of LaH10can be stabilized at substantially lower pressures than previously thought. We find a remarkable correlation between superconductivity and a structural instability indicating that lattice vibrations, responsible for the monoclinic structural distortions in LaH10, strongly affect the superconducting coupling.

     
    more » « less
  2. Abstract

    The discovery of superconductivity at 260 K in hydrogen-rich compounds like LaH10re-invigorated the quest for room temperature superconductivity. Here, we report the temperature dependence of the upper critical fieldsμ0Hc2(T) of superconducting H3S under a record-high combination of applied pressures up to 160 GPa and fields up to 65 T. We find thatHc2(T) displays a linear dependence on temperature over an extended range as found in multigap or in strongly-coupled superconductors, thus deviating from conventional Werthamer, Helfand, and Hohenberg (WHH) formalism. The best fit ofHc2(T) to the WHH formalism yields negligible values for the Maki parameterαand the spin–orbit scattering constantλSO. However,Hc2(T) is well-described by a model based on strong coupling superconductivity with a coupling constantλ~ 2. We conclude that H3S behaves as a strong-coupled orbital-limited superconductor over the entire range of temperatures and fields used for our measurements.

     
    more » « less